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SUMMARY

Dust is a key component of fusion power device accident source term.  Understanding the
amount of dust expected in fusion power devices and its physical and chemical characteristics is
needed to verify assumptions currently used in safety analyses.  An important part of this safety
research and development work is to characterize dust from existing experimental tokamaks.  In
this report, we present the collection, data analysis methods used, and the characterization of dust
particulate collected from various locations inside the General Atomics DIII-D vacuum vessel
following the June 1998 vent.  DIII-D is located in San Diego, California.  The collected
particulate was analyzed at the Idaho National Engineering and Environmental Laboratory
(INEEL).

Two methods were used to collect particulate with the goal of preserving the particle size
distribution and physical characteristics of the particulate.  Choice of collection technique is
important because the sampling method used can bias the particle size distribution collected.
Vacuum collection on substrates and adhesion removal with metallurgical replicating tape were
chosen as non-intrusive sampling methods.  Sampling was completed in four areas of the
machine;  0 to 90° area, the 90° to 180° area, the 180° to 270° area, and the 270° to 360° area.
The 0° direction designates the north side of the DIII-D machine.  Seventeen samples were
collected including plasma facing surfaces in lower, upper, and horizontal locations, surfaces
behind floor tiles, surfaces behind divertor tiles, and surfaces behind ceiling tiles.  The results of
the analysis are listed below.

• Our Brunauer, Emmett, and Teller (BET) specific surface area analysis results are based
upon three measurements of a sample combined from approximately 75% of the filter
housing samples.  The samples were combined to yield a detectable surface area of dust.  The
combined sample had an average specific surface area of 3.18 m2/gram from a total sample
weight of 0.11 grams.  This value is very similar to the value obtained in the 1996 DIII-D
dust campaign and is a factor of 2 greater than that for theoretically dense graphite spheres.
This indicates that as previously observed, the particulate is not spherical and is composed of
agglomerates of smaller particles.

• The particle size distribution analysis results of dust taken from inside the vacuum vessel
show a range of count median diameter (CMD) values ranging between 0.81 µm and 2.89
µm with a range of geometric standard deviation (GSD) values between 1.33 and 3.43. DMVS
values ranged between 1.1 and 13.3 µm.  The mass median diameter (MMD) of the
particulate was determined from the cascade impactor data.  The MMD’s were 7.25 µm with
a GSD of 1.4 and 5.44 µm with a GSD of 2.2.  The observed particles appeared in the form
of both flakes and spheres.  Compositional analysis by scanning electron microscopy/energy
dispersive spectroscopy (SEM/EDS) showed individual dust composed of molybdenum, iron,
boron, and aluminum.  Overall chemical analysis by inductively coupled mass spectroscopy
(ICP-MS) of the cascade impactor samples and the combined filter housing sample used for
BET analysis resulted in a wide variety of material.

• Elemental analysis of the dust indicates that the dust is primarily carbon (30 wt%) with
significant quantities of metal (45 wt%) (primarily iron/nickel based alloys).  Insulator
materials were found in the dust throughout the machine as well as smaller quantities of
various elements that are contained in instrumentation and diagnostic components.

• The bulk of the material analyzed was found in lower protected regions of the vacuum vessel.
Most of the dust was found under the floor tiles and inside the access ports.  Dust
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concentrations in these locations were between 10 and 100 µg/cm2.  The smallest quantities
of dust were found in the upper vertical locations of the vacuum vessel and on plasma facing
surfaces.  Dust concentrations in these locations were between 0.01 to 1 µg/cm2.  Using these
dust concentrations and integrating around the vacuum vessel in the general areas sampled,
the total quantity of dust that may be present in the vacuum vessel could be as low as 30
grams and as high as 90 to 120 grams.
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1.0 Introduction

Particulate is formed during operation of fusion machines by three mechanisms:
erosion of loosely attached vapor deposited material from surfaces, erosion of structural
and plasma facing materials during plasma-wall interactions, and direct nucleation and
growth of particles following vaporization of material during a plasma-wall interaction.

On August 3 and 4, 1998 the DIII-D vacuum vessel was accessed by the
operations personnel for dust sampling and other maintenance activities inside the vessel.
Prior to sampling, concern was raised by the operations personnel that a significant
quantity of dust was found on the colder surfaces of the machine.  Dust was visible in
many of the instrument and access ports.  The composition of the dust was not known
and it was possible that the dust contained significant quantities of beryllium.  Thus, as a
precaution, respirators were required for subsequent work inside the vacuum vessel due
to the potential for resuspension of the dust during the dust sampling activities.
Following the dust sampling, the vessel was cleaned prior to maintenance activities in the
vacuum vessel.  Subsequent analysis indicated that the dust contained no beryllium and
was primarily an iron/nickel based alloy.

This sampling effort represents the second sampling of dust from the DIII-D
vacuum vessel.  There were three goals associated with this sample collection effort.
First, comparison with the sampling effort of 1996 was desired, including tracking of
sampled surface area as well as documentation of specific sample locations.  Larger
surface areas were also sampled.  Secondly, the deposition concentration and distribution
across the machine was desired and finally, the results of this analysis are used to
estimate the total amount of dust present in the DIII-D vacuum vessel.

This report presents the sample descriptions and collection methods in Section
2.0.  Section 3.0 details the specific surface area analysis completed on the dust and
compositional analysis of the dust is presented in Section 4.0.  The particle size
distribution analysis is presented in Section 5.0.  Section 6.0 includes a discussion of the
results of this analysis, comparison with previous DIII-D particle characterization as well
as with other tokamak dusts and plasma disruption experiment results obtained from
North Carolina State University’s SIRENS carbon tests.  Also an estimate of the total
particulate mass found in the DIII-D vacuum vessel is presented.  Conclusions are found
in Section 7.0.
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2.0 Particle Collection Description and Methods

Figure 2.1 shows a photograph of the inside of the DIII-D vacuum vessel.  We
were able to sample a variety of locations including:  upper plasma facing surfaces, upper
locations protected from the plasma, lower plasma facing surfaces, lower protected
locations, and inside the R-1 instrumentation ports.  Upper plasma facing surfaces
included the upper ceiling portions of the first wall.  Upper protected surfaces are
represented by surfaces located behind ceiling tiles.  Lower sample positions were from
the outer baffle and the floor tiles.  The R-1 instrumentation ports are located on the outer
wall of the vessel just below the horizontal mid-plane of the machine.

Figure 2.1. Photograph of DIII-D showing the general areas of tile removal.  Note that
this photo does not show the new upper divertor structure that is now in
place.  (Actually we removed the Lower 45° and Row 1, 2, and 3 tiles (as
shown in Figure 2.4.)

We were able to sample in detail in the 337 to 345° poloidal direction on both the
plasma facing surface tiles and underneath the tiles on the lower substructures. The tiles
are configured in “banks” and are removed in these banked sections.  Figure 2.2 shows a
cross-sectional drawing of the upper divertor structure.  The 45° tile and the row 1 tile
were removed in the 337-345° location.  Figure 2.3 shows a cross-sectional drawing of
the lower baffle assembly.  The tiles between 337 and 345° were removed and the surface
underneath vacuumed.  Figure 2.4 shows a photograph of the floor of DIII-D including
the lower 45° tile.  The tiles removed in the 337 – 345° location are indicated in the
photograph.  In the 45-55°, the 135-145, and the 225-235° locations only the lower 45°
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and the row 1 floor tiles were removed.  The lower baffle and the ADP isolated ring are
also shown in Figure 2.4.

During the 1996 DIII-D vent we used a system of sample identification by
“Quadrants.”  This was primarily due to unfamiliarity with location identification within
the DIII-D vacuum vessel.  All references to samples during this (July 1998) vent are by
DIII-D toroidal radial location designations.  Table 2.1 shows how the previously used
“Quadrants” correspond to actual DIII-D radial location designations.

Table 2.1.  Previous 1996 vent sample designation correspondence to toroidal position.
Quadrant Toroidal Position

1 0 – 90°
2 90 – 180°
3 180 – 270°
4 270 – 360 (0)°

For location comparisons, in 1996 lines of floor tiles at the 45°, 135°, 225°, and
315° locations were the focus of the sampling effort.  Results obtained during the
previous 1996 vent dust collection effort will be summarized and compared in Section
6.0 of this report.

Three methods of dust collection were used during this sampling campaign.
Vacuuming onto filter substrates having 0.02 µm pore size was used as the primary
sampling method.  Four cascade impactors were used to sample from underneath four
areas of the lower 45° and Row 1 floor tiles.  This area tends to have the largest
concentration of dust and debris and makes use of cascade impactors feasible.  Three lift-
off tape samples were also obtained, two on lower 45° tiles and one sample from inside a
R-1 port.

Figure 2.2. Cross-sectional schematic of the upper divertor section of DIII-D.  This
shows the new upper divertor structure.  Only the 45° and Row 1 tiles will
be removed (As Marked). (4 tiles)
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Figure 2.3. Lower Baffle Plate.  The entire assembly is removable. (8 tiles).

Figure 2.4. Photograph of the DIII-D floor showing key items of interest including the
lower 45° tile.
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2.1 Descriptions of Sample Location

Samples were taken from six general areas of the DIII-D vacuum vessel.  Samples
were taken from plasma facing surfaces in lower horizontal and upper horizontal
locations.  Samples were also taken from the corresponding locations underneath lower
horizontal and upper horizontal surfaces.  Three vacuum samples were collected from
inside the R-1 access ports.  Three samples were taken from inside R-1 ports.  Table 2.2
shows a summary of the samples, location, description of location.

Table 2.2.  Sample description and collection location.
Sample Description Toroidal

Location
Sample

Identifier
FH1 Underneath the 337 - 345° Lower Baffle tiles 337 – 345° BLH
FH2 Top surface of 337 - 345° Lower Baffle tiles 337 – 345° LPFS
FH3 Top surface of 337 - 345° lower 45°, Row 1,2,&3 Floor tiles 337 – 345° LPFS
FH4 Top surface of 337 - 345° upper 45 and Row 1 Ceiling tiles 337 – 345° UPFS
FH5 Underneath and back of 337 - 345° upper 45 and Row 1 Ceiling

tiles
337 – 345° BUH

FH6 Top of 0-90° lower baffle plate 0 – 90° LPFS
FH7 0-90° R-1 ports 0 – 90° R-1
FH8 Top of 90-180° lower baffle plate 90 – 180° LPFS
FH9 90-180° R-1 ports 90 – 180° R-1
FH10 Top of 180-270° lower baffle plate 180 – 270° LPFS
FH11 180-270° R-1 ports 180 – 270° R-1
FH12 Surface of the 90-180° upper 45° and Row 1 Ceiling Tiles 90 – 180° UPFS
FH13 Surface of the 180-270° upper 45° and Row 1 Ceiling Tiles 180 – 270° UPFS
FH14 Surface of the 270-360° upper 45° and Row 1 Ceiling Tiles 270 – 360° UPFS
FH15 Surface of the 45-55° lower 45°, Row 1 Floor, Row 1 CP tiles 45 – 55° LPFS

FH16 Surface of the 135-145° lower 45°, Row 1 Floor, Row 1 CP tiles 135 – 145° LPFS
FH17 Surface of the 225-235° lower 45°, Row 1 Floor, Row 1 CP tiles 225 – 235° LPFS
RT1 Lift-off tape from 30° Lower 45° Tile 30° RT
RT2 Lift-off tape from 95° Lower 45° Tile 95° RT
RT3 Lift-off tape from 105° R-1 access port 105° RT

CI-MSS-01 Underneath the Lower 45° and row 1 floor tiles 45 – 55° BLH
CI-MSS-03 Underneath the Lower 45° and row 1 floor tiles 135 – 145° BLH
CI-MSS-05 Underneath the Lower 45° and row 1 floor tiles 225 – 235° BLH
02-250 SS Underneath the Lower 45°, Row 1, and row 2 Floor tiles 337 – 345 BLH

CP - Center post
BLH - Beneath Lower Horizontal Tiles
LPFS - Lower Plasma Facing Surface
UPFS - Upper Plasma Facing Surface
BUH - Behind Upper Horizontal Tiles
R-1 - Inside R-1 ports
RT - Replicating tape samples

2.1.1 Beneath Lower Horizontal Surfaces

The largest quantities of dust were found in locations behind lower horizontal
surfaces.  Five samples were taken from behind lower horizontal surfaces.  The Lower
45° and Row 1 tiles in four separate areas were removed and the surfaces underneath
vacuumed with cascade impactors.  The area behind the 337 – 345° lower baffle was
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vacuumed with a filter housing.  Figures 2.5 through 2.9 show photographs of the areas
behind the lower horizontal tiles.

Figure 2.5. Photograph of the lower baffle with the 337 – 345° tiles removed.

Figure 2.6. Close-up photograph of area behind the lower 45° and Row 1 45 – 55°
floor tiles.
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Figure 2.7. Close-up photograph of area behind the lower 45° and Row 1 135 – 145°
floor tiles.

Figure 2.8. Close-up photograph of area behind the lower 45° and Row 1, 225 – 235°
floor tiles.
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Figure 2.9. Photograph of area behind the Lower 45° and Row 1 and 2, 337 – 345°
floor tiles.

2.1.2 Beneath Upper Horizontal Surfaces

Dust was sampled from beneath one upper horizontal surface, the Upper 45° and
Row 1 ceiling tiles.  Figure 2.10 is a photograph of the area sampled in the 337 – 345°
toroidal location.  The backs of the tiles removed from this location were also vacuumed
with the same filter housing.

2.1.3 Inside R-1 Ports

Figure 2.11 is a photograph of the 0 – 90° R-1 access ports.  Figure 2.12 shows a
photograph of the 90 – 180° R-1 access ports.  Figure 2.13 shows a photograph of one of
the 90 – 180° R-1 access ports.  Broken and crushed glass was found in one of the 90 –
180° ports.  The glass was from a broken diagnostic or window.
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Figure 2.10. Photograph of area behind the 337 –345° Upper 45° and Row 1 ceiling
tiles.

Figure 2.11. Photograph of the 0 – 90° R-1 access ports.
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Figure 2.12. Photograph of the 90 – 180° R-1 access ports.

Figure 2.13. Broken glass found in the a 90 – 180° port.
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2.2 Replicating Tape Samples (Lift-off)

Three sets of lift-off tape samples were collected.  The first set of tapes were used
on the Lower 45° tiles located at the 30° and the 95° toroidal locations.  The third set of
replication tape samples were taken from inside the 105° R-1 port.  Figure 2.14 shows the
replication tape samples on the Lower 45° tile and Figure 2.15 shows the replicating tape
samples located inside the R-1 port.  Two strips were placed on each tile to be sampled.
The two strips were then combined into one sample for the tile.

Figure 2.14. Photograph of the replicating tape samples on the 95° Lower 45° tile.
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Figure 2.15. Photograph of the replicating tape samples inside the 135° R-1 port.

2.3 General Observations

During the last two vents of DIII-D, a sooty particulate has been found on the
lower 45°, Row 1 floor, and Row 1 center post tiles in visible quantities.  As illustrated in
Figure 2.16, the sooty region begins just inside of the inner strike point of the plasma.
Outboard of this location, the tile surfaces are fairly smooth and clean.  The ADP isolated
ring can also be seen in the left of Figure 2.16.  In contrast to the floor, the ceiling is
relatively smooth and clean, including the region inside of the inner strike point of the
plasma.  Figure 2.17 shows a photograph of the ceiling tiles in the same toroidal location
as the floor tiles shown in Figure 2.16.
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Figure 2.16. Photograph of DIII-D floor tiles. (Photograph courtesy of DIII-D
personnel)

A key goal of this collection effort was to determine dust concentrations in
various poloidal and toroidal locations.  It is suspected that the sooty deposits on the
inboard side of the plasma are actually eroded from outboard locations and then swept
and deposited inboard.  Although this has not been confirmed, the sooty deposit on the
inboard side of the plasma is eroded from locations other than the inboard lower 45° and
row 1 floor tiles.  Much of the dust sampling effort focuses on the areas underneath and
on the surface of the Lower 45° and Row 1 floor tiles where these soot deposits form.  It
seems that much of the dust formed by the various mechanisms in the machine is swept
to the lower inboard side of the plasma and deposited either underneath the tiles or on the
plasma facing surfaces of the tiles.  The deposit seems to be fairly uniform toroidally
around the machine.
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Figure 2.17. Photograph of DIII-D ceiling tiles.  (Photograph courtesy of DIII-D
personnel)

A dust phenomena not observed to a large extent in previous vents of DIII-D is
illustrated in Figure 2.18.  The word “DUST” can be seen written in the dust collected on
the wall of a penetration port in the 180° R-0 plane of the vacuum vessel.  This fine
collection of dust was primarily metallic and very spherical.  The dust was found on most
of the cold surfaces of the penetration ports around the machine.  At this point in time it
is believed that this dust was formed by the interaction of an Inconel component of the
experiment with the plasma.  The particulate is very spherical and will be discussed
below.

Figure 2.18. Photograph showing dust collected on the surfaces of a penetration port.
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2.4 Collection Methods

Three dust collection methods were used during this collection campaign.  Filter
housings containing 0.02 µm pore size filter substrates were used in conjunction with a
small vacuum pump to vacuum particulate from surfaces.  This is a method that has been
used extensively in the past for sampling particulate from tokamak experiments for the
purpose of dust characterization1.

Seven stage total mass INTOX cascade impactors were used to obtain a mass
based distribution of the dust found underneath the floor tiles.  The cascade impactors
were used only in this location because these areas generally contain the largest quantity
(by mass) of particulate.  Final filters with a 0.8 µm pore size were used in the cascade
impactors.  Smaller pore size final filters were not used because the required flow rate
through the impactor could not be maintained with the larger pressure drop associated
with the finer pore size filters.  Loss of particles smaller than 0.8 µm are not usually
significant to a mass based particle size distribution measurement since most of the mass
in aerosols is generally associated with the larger particle sizes.

Finally, metallurgical replicating (lift-off) tape was used in three locations to
physically remove particulate from surfaces.  This method has also been used in the past
for the purpose of collecting particulate for characterization.

The surface area of the walls sampled was recorded as well as the differential
weight of the collected sample.  Overall, 1.152 grams of dust was collected from the
DIII-D vacuum vessel.  A total of 1.25 x 105 cm2 (12.5 m2) of surface area was sampled
with the vacuum filter housings or with one of the four cascade impactors.  This
represents an average of 9.21 µg/cm2 surface concentration of dust.  This is somewhat
misleading since the largest quantity of dust is found underneath the lower horizontal
surfaces on a relatively small surface area.  Large quantities of dust did not collect on the
plasma facing surfaces and the surface concentration of dust is much smaller than that
found under floor tiles.  An average across the entire machine is not representative of the
actual behavior of dust in the vacuum vessel.  Table 2.3 presents a summary of the
surface concentration of dust for each sample collected in the DIII-D vacuum vessel.
Also presented in Table 2.3 are the mass, surface area, toroidal location, and general
descriptor of the sample origin.

Figure 2.19 is a plot of the data shown in Table 2.3 as a function of toroidal
location and surface orientation.  The graph indicates that dust is evenly distributed
around the torus.  Dust collected from similar positions at different toroidal locations
shows little variance.  Poloidally, the same is not true.  Vertical or inverted surfaces in the
machine, such as the ceiling tiles and the outer upper and lower divertor regions,
generally hold very little dust (between 0.1 and 1 µg/cm2).  In general, dust
concentrations on plasma facing surfaces are smaller than in ports or in areas underneath
tiles.  Of all of the plasma facing surfaces, the greatest concentration of dust (1 µg/cm2) is
associated with the Row 1 center post tiles, the inner Lower 45° tile, and the Row 1 floor
tiles because of the soot that collected there during operation (see Figure 2.16).  It is
suspected that the sweeping action of the plasma erodes the outer PFC regions and
deposits the material on these tiles.
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Table 2.3.  Summary of sample locations, surface area, and collected mass.
Toroidal
Location

Sample
Identifier

Mass
mg

Surface Area
cm2

Dust Concentration
µg/cm2

FH1 337 – 345° BLH 16.4 838 19.6
FH2 337 – 345° LPFS 0.2 838 0.24
FH3 337 – 345° LPFS 0.8 1935 0.41
FH4 337 – 345° UPFS 0.4 929 0.43
FH5 337 – 345° BUH 1.5 1858 0.81
FH6 0 – 90° LPFS 0.3 14864 0.02
FH7 0 – 90° R-1 5.9 206 28.6
FH8 90 – 180° LPFS 2.9 14864 0.20
FH9 90 – 180° R-1 13.9 206 67.3

FH10 180 – 270° LPFS 3.7 14864 0.25
FH11 180 – 270° R-1 35.7 206 172.9
FH12 90 – 180° UPFS 1.7 8129 0.21
FH13 180 – 270° UPFS 0.3 8129 0.04
FH14 270 – 360° UPFS 0.3 5806 0.0517
FH15 45 – 55° LPFS 2.5 14806 0.1688

FH16 135 – 145° LPFS 1.3 14806 0.0878
FH17 225 - 235° LPFS 2 14806 0.1351
RT1 30° RT - - -
RT2 95° RT - - -
RT3 105° RT - - -

CI-MSS-01 45 – 55° BLH 170.1 1935 42.6
CI-MSS-03 135 – 145° BLH 288.4 1535 114.9
CI-MSS-05 225 – 235° BLH 460.3 1535 143.7
02-250 SS 337 – 345 BLH 143.5 1935 28.4
BLH - Beneath Lower Horizontal Tiles
LPFS - Lower Plasma Facing Surface
UPFS - Upper Plasma Facing Surface
BUH - Behind Upper Horizontal Tiles
R-1 - Inside R-1 ports
RT - Replicating tape samples
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Figure 2.19. Graph of the toroidal mass distribution of dust around the DIII-D machine.

The largest quantity of dust is found on the lower horizontal surfaces of the
machine, specifically underneath the floor tiles.  The dust concentrations of horizontal
surfaces in areas protected from the plasma, such as ports and underneath tiles, ranged
between 10 and 100 µg/cm2.  This is believed to be due to the fact that these surfaces are
much cooler during operation than the plasma facing surfaces of the machine and
particles are easily deposited on cold surfaces.  The ports located in the R-1 plane (just
below the horizontal mid-plane of the machine) collect larger amounts of material due to
the horizontal surfaces.  Dust concentrations in these ports ranged from 10 to 100 µg/cm2.
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3.0 BET Surface Area Analysis

We use a Micromeritics Model ASAP 2010 (Accelerated Surface Area and
Porosimetry System) to measure the surface areas of solid samples and particulate
samples.  The design of this system is based on the use of a static volumetric method for
determining the volume of gas adsorbed on a sample.  The volume of gas adsorbed at a
constant temperature and a controlled pressure is obtained from mass balance equations,
appropriate gas law, correction factors for non-ideal behavior, and accurate
measurements of pressure and volumes of a manifold and free volume within a sample
container.  During analysis, the sample and a controlled portion of the sample container
are maintained at a cryogenic temperature, generally near that of liquid nitrogen (LN2).
Well-regulated amounts of gas near ambient pressure and temperature are supplied
through a manifold having accurately known volume and temperature.  The molar
quantity of gas adsorbed on the sample is computed once the pressure of the gas admitted
from the manifold has equilibrated and been accurately measured.  This procedure is
repeated at several pressures allowing a plot of the quantity of adsorbed gas versus
pressure to be established.  This type of plot, referred to as an adsorption isotherm, is
used to calculate the specific surface area of the sample material.  This method was
developed by Brunauer, Emmett, and Teller, (BET)2 and a complete description of our
capabilities and methods is available in Anderl et al3 and Smolik et al.4

For our measurements, both Kr and N2 were used as the adsorptive gas in separate
measurements and the adsorption measurements were made with the specimens at liquid
nitrogen temperature (77 K).  Generally, Kr gas is used when samples are expected to
have very low total surface areas.  N2  gas is used when samples are expected to have
larger total surface areas.  Typically, measurements were made for relative pressures
ranging from 0.02 to 0.3, where the relative pressure, Prel, is defined as the actual
adsorptive gas pressure, P, divided by the saturation vapor pressure, Po , for the adsorptive
gas at the analysis temperature.  Usually, four to ten measurements of the gas adsorption
isotherm were made over the designated pressure range using an automated analysis
sequence that was controlled by the ASAP 2010 instrument computer.

We analyzed the dust collected from beneath the Lower 45° and Row 1 floor tiles
for specific surface area.  We were unable to obtain an accurate measurement of the
specific surface area from the four samples taken from underneath these floor tiles.  This
is because the cascade impactor collection substrates were coated with a layer of vacuum
grease to help eliminate particle bounce and subsequent loss in the impactors.  The grease
coats the particle’s surface such that the BET analysis gas cannot adsorb to the particle
surface area thus effectively reducing the measured BET specific surface area.  We were
not able to eliminate the grease from the dust samples even after repeated attempts.
Specific surface area measurements were obtained for samples CI-MSS-05 and 02-0250-
SS although the results are not reliable due to the grease contamination.  Specific surface
area was not detectable for samples CI-MSS-01 and CI-MSS-03 due to grease
contamination.

We also analyzed a combined sample of FH1, FH5, FH7, and FH11 through
FH17 vacuum samples for specific surface area.  The samples were combined to obtain
enough dust to provide a detectable surface area.  Since these samples were not collected
with cascade impactors there was no grease contamination on them.  An average of the
two measurements of the combined filter housing samples yielded a specific surface area
of 3.1478± 0.0156 m2/g from a total sample weight of 0.0408 grams.
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Following BET surface area analysis, the samples were analyzed for composition
by ICP-MS.  This analysis by ICP-MS was performed to determine the composition of
the sample that was analyzed by BET surface area analysis and is presented in Section
4.1.

Table 3.1  Table of BET specific surface area measurements for DIII-D (April 1998)
Measurement Mass

(g)
Specific Surface Area

(m2/g)
Uncertainty (m2/g)

FH1, FH5,
FH7, FH11 –

FH17

0.0408 3.1478 ±0.0156

0.0408 3.0581 ±0.0145

0.0408 2.8450 ±0.0131

CI-MSS-01† 0.4543 - -

CI-MSS-03† 0.3148 - -

CI-MSS-05† 0.5128 0.0744 ±0.0003

0.5128 0.0820 ±0.0002

02-250-SS† 0.2865 0.1088 ±0.0010

0.2865 0.1090 ±0.0009

0.2865 0.1274 ±0.0009
† Samples contaminated with vacuum grease closing the surface area available for
measurement.
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4.0 ICP-MS and ESEM/EDS Composition Analysis

We used two techniques to analyze the collected dust for elemental composition:
inductively coupled mass spectroscopy (ICP-MS) and environmental scanning electron
mass spectroscopy (ESEM/EDS).  Using the EDS capability of the ESEM allowed
qualitative elemental composition analysis of individual particulate down to
approximately 1 µm in size.  Particles smaller than 1 µm are smaller than the EDS
analysis zone and therefore cannot be reliably analyzed using EDS.  Bulk sample
composition was quantitatively measured using ICP-MS.  ICP-MS analysis was carried
out on the sample collected from underneath the K-port floor modules.  This sample was
also analyzed for specific surface area as described in Section 3.0.

4.1 ICP-MS Analysis

Chemical constituent characterization was carried out by two methods.  ICP-MS
was used to measure the metallic elements present in the dust.  A Carlo Erba EA1108
Carbon Hydrogen Nitrogen Oxygen Sulfur (CHNOS) Elemental Analyzer combustion
analysis instrument was used to measure the amount of carbon, nitrogen, and hydrogen
contained in the samples.  The samples were split to provide sample material for both the
ICP-MS and the CHNOS analysis.

Five samples were analyzed using an ICP-MS.  The samples were first dissolved
in 50% hydrofluoric acid.  They were placed on a hotplate and heated to dryness.  Then
10 ml of nitric acid was added and the samples were again heated on the hotplate.  The
samples did not completely dissolve in the HF solution.  This was also experienced
during analysis of Alcator C-MOD samples and is most likely due to insulator material
such as silicon oxide or some other very inert material (i.e. Inconel) used in the vacuum
vessel.  The samples were allowed to cool, then analytically transferred to 100 ml
volumetric flasks, and diluted to volume with Nanopure water.  All of samples were
filtered through a 0.2 micron filter and spiked with yttrium (an internal ICP-MS standard)
before being analyzed by ICP-MS.  The results of the ICP-MS analysis are summarized
in Table 4.1.

Table 4.1 Results of initial dissolution and analysis with ICP-MS (wt%).
Sample Al B Ca Mo Zn Ag Cr Cu Fe Ni

CI-MSS-01 2.6 0.28 0.12 1.8 0.10 0.09 7.82 0.4 14.2 19.8

CI-MSS-03 3.0 0.62 0.10 3.1 0.13 0.07 8.92 0.8 8.4 23.6

CI-MSS-05 2.0 0.38 0.09 2.5 0.12 0.03 7.79 0.5 5.8 22.5

02-250 1.9 2.85 0.17 1.3 0.08 0.03 7.76 4.1 20.9 11.7

Filter Sub. 6.9 6.72 0.22 2.5 0.28 0.17 6.25 1.5 5.8 17.9

Mean %
Error

 -3.2 ± 0.4  -1.5 ± 0.9  -2.3 ± 2.6  1.6 ± 0.4  2.7 ± 0.6  -2.5 ± 1.8  0.1 ± 1.0  1.8 ± 0.5  1.5 ± 0.2  2.0 ± 0.3

Approximately 1-5 mg of each sample was weighed into tared 8 x 5 mm tin
containers.  Each sample was analyzed three times with the Carlo Erba EA1108 and the
average of these measurements reported in Table 4.2. The samples were placed into an
autosampler on the analyzer behind a set of weighed standards. The analyzer combusts
each standard, measures the effluent, and calculates the elemental composition of the
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standards.  Each sample is then combusted while the instrument measures the effluent
and calculates the elemental composition for each sample.
The mean % error reported above in Table 4.1 reflects the total error incurred by the ICP-
MS instrument based upon measurement of the internal standards at the beginning of the
sample analysis.

Table 4.2 Results of analysis for carbon, hydrogen, nitrogen by combustion.
Sample Carbon (wt%) Hydrogen (wt%) Nitrogen (wt%)
CI-MSS-01 22.92 ± 4.44 3.02 ± 0.57 0.40 ± 0.09
CI-MSS-03 35.43 ± 3.21 3.52 ± 0.22 0.66 ± 0.14
CI-MSS-05 21.23 ± 8.33 2.78 ± 1.08 0.64 ± 0.22
02-250 27.00 ± 4.64 2.35 ± 1.36 0.53 ± 0.13
Filter Housings 44.52 ± 3.29 0.87 ± 0.10 0.76 ± 0.10

Chemical analysis of the DIII-D dust samples indicates that the bulk of the
materials found in the dust are carbon or an Inconel alloy.  A variety of materials are used
in DIII-D for various instrumentation and diagnostic equipment.  These materials appear
in the elemental analyses.  The above weight percent results from the two analysis
techniques do not add to a complete mass balance primarily due to materials that we do
not include in the analysis.  A primary constituent that is present in DIII-D but not
quantified is silicon.  Silicon is used in a variety of insulation materials in DIII-D.
Silicon analyses is difficult to accomplish using ICP-MS without interfering with the
results of the above elements that we consider more important from a safety point of
view.

4.2 ESEM/EDS Analysis

Results were obtained from ESEM/EDS analysis of four samples FH5, FH7, FH9,
and FH12.  The main purpose of this analysis was to obtain spot compositional analysis
of individual particles.  EDS analysis of the samples was accomplished by mounting a
section of the filter substrate on an examination stub and vapor depositing a thin
(approximately 10 angstroms) coating of carbon to the entire stub and sample.  This
provides a conduction path for the electrons generated by the instrument for analysis.
This coating is too thin to affect the performance of the EDS detector.  Unfortunately,
only qualitative elemental compositions are available due to the very low secondary
electron emission of carbon materials.  Individual particles (< 1 µm in diameter) can not
be analyzed for quantitative or even qualitative elemental composition using EDS
because the spot size of the EDS analysis is larger than 1 µm.  Therefore, EDS analysis of
particles have diameters less than 1 µm is unreliable at best.  ESEM analysis is extremely
useful in visualizing very small features, even as small as a few nanometers.  The
following figures in this section illustrate the general particulate found in the DIII-D
samples as well as some general composition.  Figure 4.1 is a photomicrograph showing
the substrate of the FH5 sample.  Note that the pores are relatively uniform at
approximately 0.2 µm.  These filter substrates are rated at a total porosity of 0.02 µm due
to the thickness of the substrate.
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Figure 4.1. Photomicrograph showing the porosity of the FH5 filter substrate.

Figures 4.2 through 4.4 show particulate observed on sample FH5.  Figure 4.2
indicates that a variety of particulate was observed including carbon, aluminum, zinc,
calcium, oxygen, and copper.  Figures 4.3 and 4.4 both show spherical particles with
diameters less than 1 µm.

Figures 4.5 to 4.9 show photomicrographs of particulate observed on sample FH7.
The FH7 sample was taken from surfaces in the R-1 0 – 90° port.  The area was visibly
covered with a fine coating of particulate.  The figures indicate a wide variety of
spherical particles.

Figures 4.10 through 4.14 show particulate found on sample FH9, a sample taken
from surfaces in the 90 – 180° R-1 ports.  A variety of particle compositions are shown
ranging from aluminum and oxygen to nickel, chromium, and iron.  A spherical particle
with carbon composition is also shown.

Figures 4.15 through 4.19 show particulate observed on the FH12 sample.  This
sample was collected from the plasma facing surfaces of the 90-180° Upper 45° and Row
1 ceiling tiles.  A variety of flaky particulate was observed on this sample having
compositions including aluminum, carbon, phosphorous, and oxygen.  The phosporous
may be exitation lines generated by other elemental spectrums.
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Figure 4.2. Photomicrograph of FH5 sample at 1000X showing a variety of materials.

Figure 4.3. Photomicrograph of FH5 sample showing a high magnification image of a
sub-micron spherical particle.
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Figure 4.4. Photomicrograph of a sub-micron spherical particle found in the FH5
sample.

Figure 4.5. Photomicrograph of an aluminum and oxygen particle found in the FH7
sample.



25

Figure 4.6. Photomicrograph of particulate found in the FH7 sample.

Figure 4.7. Photomicrograph of particulate found in the FH7 sample including
spherical particles.
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Figure 4.8. Photomicrograph of particulate found in the FH7 sample including a larger
spherical particle.

Figure 4.9. Photomicrograph of particulate found in the FH7 sample including a sub-
micron spherical particle.
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Figure 4.10. Photomicrograph of particulate found in the FH9 sample including a
spherical particle.

Figure 4.11. Photomicrograph of carbon, steel , and spherical carbon particles in
sample FH9.
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Figure 4.12. High magnification photomicrograph of the Fe, Ni, Cr particle shown in
Figure 4.11.

Figure 4.13. Photomicrograph of a spherical carbon particle found in sample FH9.
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Figure 4.14. Photomicrograph of a 2 micron particle found in sample FH9.

Figure 4.15. Photomicrograph showing compositions of particles found in FH12.
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Figure 4.16. Photomicrograph of particles found in FH12 at 5000 X.

Figure 4.17. Photomicrograph of particles found in FH12 at 10000 X magnification.
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Figure 4.18. Photomicrograph of particles found in FH12 at 12000 X magnification.

Figure 4.19. Photomicrograph of particles found in FH12 at 20000 X magnification.
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5.0 Particle Size Distribution Analysis

Particle size distribution analysis was performed on 17 filter vacuum samples.
Particle size distribution information was also obtained from four cascade impactor
measurements.  Three samples were collected using metallurgical replicating tape.  The
replicating tape samples were analyzed first with an LS130 Coulter Counter and then
using the optical microscope technique described below and used for the vacuum filter
samples.

5.1 Optical Particle Size Analysis Methodology

The optical microscope analysis samples were analyzed according to the methods
outlined in Carmack et al.1  A flow chart schematic of the particle size distribution
construction method is shown in Figure 5.1.

Aquire
Photographs

NIH-Image
Analysis

Bin and Size
in Excel

Kruskal-Wallis
Statistical Test

Determine Cumulative
Distribution for each

Magnification

Determine Size
Ranges for Each

Magnification

Apply Area Based
Scaling Factors

Combine Data
from each Magnification

and Build Overall Distribution

Calculate 95%
Confidence

Intervals

Plot Cumulative
Distribution

Calculate
d50%, d84%, R, and GSD

Calculate Log
Normal Fit

Plot Freq/µm vs.
Diameter for Measured

Data and Calculated LN Fit

Figure 5.1. Flow chart schematic of particle size distribution construction.

Photographs were acquired at 50x, 100x, 200x, 500x  and 1000x magnification in
four or five different areas of each sample.  These images were then analyzed using NIH-
Image5 and individual cumulative distributions constructed.  Before these distributions
were constructed, a Kruskal-Wallis6 statistical test was performed to ensure that the data
from different photographs represented the same underlying distribution.  If data from
one or more photographs did not pass the test with the other sets, the data were not used
in the analysis.  The data were then combined in one spreadsheet and a scaling factor was
applied based on the magnification at which the data were acquired.  Ninety-five percent
confidence intervals were calculated for each distribution.  After generating the 95%
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confidence intervals the d50% (Count Median Diameter, CMD), the d15.9%, the d84.1%, the
GSD, and the corresponding 95% confidence intervals were determined.

The mass median diameter (MMD) and the surface area mean diameter (DMVS)
can also be calculated from the data as is described fully in Hinds7.  The equation for
calculating the MMD is

MMD = exp
nid i

3 ln d( )∑
nid i

3∑
 

 
 




 (1)

where;
MMD = mass median diameter, µm,
nI = number of particles in the ith group,
dI = midpoint diameter of the ith group.

The value for the DMVS is the surface average diameter, also referred to as the
Sauter diameter or mean volume-surface diameter.  The DMVS value is used when
comparing particle size measurements with specific surface area measurements.  The
equation for calculating the DMVS is

DMVS =
si di∑
S

=
nidi

3∑
nidi

2∑ (2)

where,
DMVS = surface area mean diameter,
si = group surface area,
S = total surface area,
ni = number of particles in the ith group,
di = midpoint diameter of the ith group.

In addition to performing data analysis as reported in Carmack et al.1 that includes
calculating the 95% confidence intervals for the cumulative distribution functions (CDF),
we now report CMD values and GSD values with their associated 95% confidence
intervals as described in Appendix B of Carmack et al.1  Ninety-five percent confidence
intervals on the CDFs are still used to evaluate percentage distributions as previously
reported.  Our procedure for calculating the CMD and GSD confidence intervals allows
general comparison of CMDs and GSDs obtained from the CDFs.

5.2 Particle Size Distribution Measurement Results  from Vacuum Total Filter
Samples.

The particle size data from each sample were combined to build an overall size
distribution using the methodology described in Carmack et al.1  The number of particles,
magnification, and number of photographs used to create the overall distributions are
shown in Table 5.1. The number of particles, magnification, and number of photographs
used to create the overall distributions for the replicating tape samples are shown in Table
5.2.  The ranges used from each magnification are shown in Table 5.3 (filter housing
samples) and 5.4 (replicating tape samples) respectively.
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Table 5.1 Analysis details for filter housing samples.
Magnification

Sample 1000x 500x 200x 100x 50x
FH1

Number of Particles
Number of Photographs

113
3

Not Used
906
4

170
4

557
3

FH2
Number of Particles

Number of Photographs
214
3

189
4

Not Used
118
4

183
3

FH3
Number of Particles

Number of Photographs
182
4

294
4

604
4

Not Used
1570

3
FH4

Number of Particles
Number of Photographs

121
4

228
4

282
3

Not Used
2607

4
FH5

Number of Particles
Number of Photographs

164
4

274
4

914
4

Not Used
2261

2
FH6

Number of Particles
Number of Photographs

141
4

75
3

110
3

Not Used
286
4

FH7
Number of Particles

Number of Photographs
1010

4
468
4

169
3

Not Used
514
4

FH8
Number of Particles

Number of Photographs
366
4

259
4

383
4

Not Used
766
4

FH9
Number of Particles

Number of Photographs
92
4

85
4

106
4

Not Used
193
3

FH10
Number of Particles

Number of Photographs

Not Used
378
4

234
4

Not Used
739
4

FH11
Number of Particles

Number of Photographs
60
5

612
3

295
4

Not Used
423
4

FH12
Number of Particles

Number of Photographs
370
3

443
3

651
3

Not Used
1437

2
FH13

Number of Particles
Number of Photographs

83
4

289
4

536
4

Not Used
1004

2
FH14

Number of Particles
Number of Photographs

139
4

415
4

713
4

Not Used
1395

2
FH15

Number of Particles
Number of Photographs

933
4

805
4

1101
3

Not Used
2173

3
FH16

Number of Particles
Number of Photographs

446
3

465
2

974
3

Not Used
2856

3
FH17

Number of Particles
Number of Photographs

237
4

270
4

504
3

Not Used
3622

4
* - Not used because either no particles were found at this magnification or the data

overlapped in the adjacent magnifications.
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Table 5.2 Analysis details for optical analysis of replicating tape samples.
Magnification

Sample 1000x 500x 200x 100x 50x
RT 1

Number of Particles
Number of Photographs

32
4

22
4

28
4

Not Used
39
4

RT 2
Number of Particles

Number of Photographs

Not Used
11
4

24
3

Not Used
14
4

RT 3
Number of Particles

Number of Photographs
10
4

Not Used
5
4

21
4

9
3

* - Not used because either no particles were found at this magnification or the data overlapped in the
adjacent magnifications.

Table 5.3 Ranges used to construct overall distributions for filter housing samples.
Magnification

Sample 1000x 500x 200x 100x 50x
FH1 0 to 1.0 µm Not Used 1.0 to 5.0 µm 5.0 to 7.0 µm 7.0 to 37 µm
FH2 0 to 1.0 µm 1.0 to 5.0 µm Not Used 5.0 to 12 µm 12 to 25 µm
FH3 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 48 µm
FH4 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 48 µm
FH5 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 48 µm
FH6 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 48 µm
FH7 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 60 µm
FH8 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 40 µm
FH9 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 48 µm
FH10 Not Used 0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 46 µm
FH11 0 to 0.6 µm 0.6 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 80 µm
FH12 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 88 µm
FH13 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 46 µm
FH14 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 40 µm
FH15 0 to 1.4 µm 1.4 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 60 µm
FH16 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 78 µm
FH17 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 82 µm

* - Not used because either no particles were found at this magnification or the data overlapped in the
adjacent magnifications.

Table 5.4  Ranges used to construct overall distributions for replicating tape samples.
Magnification

Sample 1000x 500x 200x 100x 50x
RT 1 0 to 1.0 µm 1.0 to 3.0 µm 3.0 to 8.0 µm Not Used 8.0 to 32 µm
RT 2 Not Used 0 to 1.0 µm 1.0 to 8.0 µm Not Used 8.0 to 18 µm
RT 3 0 to 2.0 µm Not Used 2.0 to 3.0 µm 3.0 to 13 µm 13 to 62 µm

* - Not used because either no particles were found at this magnification or the data overlapped in the
adjacent magnifications.

Figures 5.2 through 5.6 are representative photographs of dust from various filter
housings at various magnifications.  There are large flakes and spherical particles visible
in the majority of all of the samples.  Long cylindrical rods seen in most DIII-D dust
samples are fibers of insulation material.  The insulation material is used extensively
throughout DIII-D on thermocouples and other instrumentation.
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Figure 5.2. Photograph of DIII-D filter housing sample FH7 at 1000x magnification.

Figure 5.3. Photograph of DIII-D sample 14 at 500x magnification.

20 µm

10 µm
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Figure 5.4. Photograph of DIII-D filter housing sample 15 at 200x magnification.

Figure 5.5. Photograph of DIII-D sample FH7 at 100x magnification.

100 µm

50 µm
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Figure 5.6. Photograph of DIII-D filter housing sample 5 at 50x magnification.

The results from analysis of the DIII-D samples using the optical microscope
method are shown in Table 5.5.  The last two columns of the table show the values
calculated for the MMD and the DMVS.  The data were combined from each data set using
the ranges in Table 5.2 and 5.3.  Ninety-five percent confidence intervals were
constructed for the CDFs from these data.  Figures 5.7 to 5.26 show the CDFs with the
associated 95% confidence interval plots constructed from the data obtained in the
analysis.   The upper confidence interval is labeled +95% conf., the data collected is
labeled Data, and the lower confidence interval is labeled -95% conf.  Each graph shows
the values for the CMD and the GSD calculated using both the data and the curve fit.  We
do this for two reasons.  We believe that obtaining these values directly from the data
instead of the numerical fit is more representative of the distribution.  The numerical fit is
primarily used for determining how well the distribution conforms to a log-normal
distribution and should be used for that purpose and not for reporting data characteristics,
although the data and the fit descriptions do not vary significantly.  In addition the
corresponding 95% confidence intervals for the CMD and the GSD are shown.

200 µm
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Figure 5.19. Cumulative log probability distribution generated with 95% confidence
intervals for DIII-D 13.
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Figure 5.20. Cumulative log probability distribution generated with 95% confidence
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Figure 5.21. Cumulative log probability distribution generated with 95% confidence
intervals for DIII-D 15.
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Figure 5.22. Cumulative log probability distribution generated with 95% confidence
intervals for DIII-D 16.
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Figure 5.23. Cumulative log probability distribution generated with 95% confidence
intervals for DIII-D 17.
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Figure 5.24. Cumulative log probability distribution generated with 95% confidence
intervals for DIII-D RT1.
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Figure 5.25. Cumulative log probability distribution generated with 95% confidence
intervals for DIII-D RT2.
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A summary of the particle size analysis is shown in Table 5.5.  The CMD and
associated GSD are shown for each sample.  The MMD (determined using Equation 1)
and the DMVS (determined using Equation 2) for each sample are also shown.

Figure 5.27 shows a summary plot of particle CMD for each sample along with
the associated ninety-five percent confidence intervals for each measurement.  Similarly,
Figure 5.28 shows the particle distribution GSD for each sample along with the
associated ninety-five percent confidence interval.  Very large confidence intervals in
most of the cases in Figures 5.27 and 5.28 indicate that there were few particles found on
the samples such as for the replicating tape samples.

Table 5.5.  Summary of optical particle size analysis results.
CMD
(µm)

GSD
(µm)

DMVS

(µm)
Dm

(µm)
Toroidal
Location

Sample
Description

FH1 0.70 3.71 7.44 10.80 337 – 345° BLH
FH2 0.68 1.42 8.10 13.70 337 – 345° LPFS
FH3 0.85 2.60 13.10 18.90 337 – 345° LPFS
FH4 0.98 2.34 16.90 21.60 337 – 345° UPFS
FH5 0.89 3.27 15.90 20.10 337 – 345° BUH
FH6 0.57 2.52 8.10 13.20 0 – 90° LPFS
FH7 0.49 2.44 9.65 22.70 0 – 90° R-1
FH8 0.46 2.94 7.91 12.00 90 – 180° LPFS
FH9 0.50 2.81 16.00 25.10 90 – 180° R-1

FH10 0.88 2.18 12.10 17.30 180 – 270° LPFS
FH11 0.80 1.81 32.00 50.30 180 – 270° R-1
FH12 0.68 2.75 31.90 45.60 90 – 180° UPFS
FH13 1.00 2.88 14.70 19.40 180 – 270° UPFS
FH14 0.90 3.34 12.50 16.40 270 – 360° UPFS
FH15 0.59 3.19 16.10 24.80 45 – 55° LPFS
FH16 0.63 3.50 22.20 33.50 135 – 145° LPFS
FH17 0.57 3.32 30.50 38.92 225 - 235° LPFS
RT1 0.27 4.39 10.70 15.50 30° RT
RT2 0.70 1.72 7.20 9.20 95° RT
RT3 0.52 3.14 33.30 44.60 105° RT

BLH - Beneath Lower Horizontal Tiles
LPFS - Lower Plasma Facing Surface
UPFS - Upper Plasma Facing Surface
BUH - Behind Upper Horizontal Tiles
R-1 - Inside R-1 ports
RT - Replicating tape samples
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5.3 Particle Size Analysis using a Coulter LS130 Laser Particle Sizer

Sampling particulate from surfaces after the particulate has attached to the surface
is difficult due primarily to van Der Waals forces of attraction between the particle and
the surface.  We use multiple collection and analysis methods to ensure that a
representative quantification of the particle characteristics was made.  We used lift-off
replicating tape samples to collect particulate that might have been missed by the
vacuuming technique employed in most locations in the machine.  These replicating tape
samples were disolved in acetone and the resulting particle suspension analyzed in a
Coulter LS130 laser diffraction particle size analyzer.  Three samples were taken using
this technique employing two separate tapes placed in adjacent sample locations.  Section
2.2 presents a detailed description of the sample locations.  Three locations were
sampled; RT1, the lower 45° tile at the 30° toroidal location, RT2, the lower 45° tiles at
the 90° toroidal location, and RT3, inside the R-1 port located at the 105° toroidal
location.

Figure 5.29 shows a plot of the results of analysis using the Coulter LS130.  Since
the measurement technique yields a measure of particle diameter based on a volume
measurement, the reported results are in volumetric terms.  Volumetric determined size
analysis is generally dominated by the larger particulate and is more sensitive to larger
particulate than a count based measurement.  Figure 5.30 shows the same data plotted on
as cumulative distributions.
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RT2, and RT3.

The results of this analysis are consistent with the measurements obtained using
the count based particle size analysis reported for the optical microscope above.  RT2
shows a median diameter that is larger than expected.  This is probably due to the
presence of large pieces of particulate (i.e. > 100 µm diameters) that skews the
distribution to higher sizes.

5.4 Particle Size Distribution Measurement Results from Cascade Impactor
Measurements

Particle size analysis using a cascade impactor results in particle distributions
based upon mass.  A cascade impactor measures particle size distributions by selecting
particles for measurement based on inertial mass.  Similar to the Coulter LS130
volumetric measurement a cascade impactor measurement is most sensitive to larger
particle diameters.  The range of operation is generally between 0.2 µm and 15 µm
aerodynamic or Stoke’s diameter.  In contrast, the Coulter LS130 range of sensitivity is 1
µm up to approximately 700 µm.
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5.4.1 Method of Cascade Impactor Sampling

Four 20 liter per minute Intox 7-stage cascade impactors were used to measure the
mass based particle size distribution of dust collected in various areas of the DIII-D
vacuum vessel.  The suction line from the sampling pump used for the vacuum filter
housings was attached to the exit of the cascade impactors and a flow of 20 liters per
minute drawn through the impactors.  The sample nozzle from the filter housings was
attached to the inlet of the cascade impactors.  Four areas of the DIII-D internals were
vacuumed with the impactors.  Approximately 1900 cm2 behind the Lower 45° and Row
1 tiles were vacuumed in the 35-45°, 135-145°, 225-335°, and the 337-345° toroidal
locations.  The data are analyzed by calculating the mass of particles collected on each
stage of the impactor.  Each stage has a characteristic particle size that is collected
depending upon the flow rate drawn through the impactor.  This characteristic particle
size is called the estimated cut diameter (ECD) and represents the particle collected with
50% efficiency on each stage.  The cumulative percent of mass collected on each
successive stage is calculated and the diameter corresponding to the 50th percentile in
mass determined.  This diameter is the MMD.  The geometric standard deviation is
determined by dividing the diameter corresponding to the 84th percentile (d84%) by the
MMD.

5.4.2 Results of Cascade Impactor Sampling

Table 5.6 shows the results of the impactor stage differential weight
measurements obtained from behind the 45-55° Lower 45° and Row 1 floor tiles (CI-
MSS-01), from behind the 135-145° Lower 45° and Row 1 floor tiles (CI-MSS-03), from
behind the 225-235° Lower 45° and Row 1 floor tiles (CI-MSS-05), and from behind the
337-345° Lower 45° and Row 1,2,and 3 floor tiles (02-250).  The MMD for the dust
collected behind the 45-55° Lower 45° and Row 1 floor tiles is 8.94 µm with a GSD of
3.2.  The MMD for the dust collected from behind 135-145° Lower 45° and Row 1 floor
tiles is 7.39 µm with a GSD of 2.77.  The MMD for the dust collected behind the 225-
235° Lower 45° and Row 1 floor tiles is 5.64 µm with a GSD of 1.98.  The MMD, for the
dust collected behind 337-345° Lower 45° and Row 1,2,and 3 floor tiles is 5.26 µm with
a GSD of 3.11.

Most of the particulate mass found in the DIII-D vacuum vessel has diameter
greater than 10 µm in aerodynamic size.  This result is in agreement with the count based
particle size distributions determined from optical microscopy analysis and from the
Coulter LS130 analysis.
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Figure 5.31. Cumulative percent distribution for the four cascade impactor samples.
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Table 5.6.  Summary table of cascade impactor measurements.
CI-MSS-01

Stage
Number

Flow
Rate
l/min

Cut
Diameter

(µm)

Initial
Weight

g

Final
Weight

g

Differential
Weight

g

Fraction Cumulative
Fraction

Cumulative
Percent

%

1.00 22.00 10.72 0.6634 0.7458 0.0824 0.48 1.00 100
2.00 22.00 6.70 0.6653 0.7148 0.0495 0.29 0.52 51.6
3.00 22.00 4.22 0.6601 0.6829 0.0228 0.13 0.22 22.5
4.00 22.00 2.62 0.6622 0.6692 0.0070 0.04 0.09 9.0
5.00 22.00 1.65 0.6600 0.6647 0.0047 0.03 0.05 4.9
6.00 22.00 1.06 0.6645 0.6648 0.0003 0.00 0.02 2.2
7.00 22.00 0.67 0.6623 0.6649 0.0026 0.02 0.02 2.0

Final Filter 22.00 0.33 0.0153 0.0161 0.0008 0.00 0.00 0.5
Total 0.1701

CI-MSS-03

1.00 24.50 10.21 0.6557 0.8321 0.1764 0.61 1.00 100
2.00 24.50 6.34 0.6625 0.6813 0.0188 0.07 0.39 38.8
3.00 24.50 4.03 0.6587 0.7007 0.0420 0.15 0.32 32.3
4.00 24.50 2.47 0.6834 0.6610 0.0418 0.14 0.18 17.8
5.00 24.50 1.61 0.6588 0.6619 0.0031 0.01 0.03 3.3
6.00 24.50 1.00 0.6547 0.6579 0.0032 0.01 0.02 2.2
7.00 24.50 0.63 0.6646 0.6674 0.0028 0.01 0.01 1.1

Final Filter 24.50 0.32 0.0152 0.0155 0.0003 0.00 0.00 0.10
Total 0.2884

CI-MSS-05

1.00 22.00 10.72 0.6397 0.8603 0.2206 0.48 1.00 100
2.00 22.00 6.70 0.6659 0.7121 0.0462 0.10 0.52 52.1
3.00 22.00 4.22 0.6661 0.8197 0.1536 0.33 0.42 42.0
4.00 22.00 2.62 0.6658 0.6754 0.0096 0.02 0.09 8.7
5.00 22.00 1.65 0.6766 0.6607 0.0285 0.06 0.07 6.6
6.00 22.00 1.06 0.6602 0.6613 0.0011 0.00 0.00 0.39
7.00 22.00 0.67 0.6640 0.6645 0.0005 0.00 0.00 0.15

Final Filter 22.00 0.33 0.0151 0.0153 0.0002 0.00 0.00 0.04
Total 0.4603

02-250 SS

1.00 22.00 10.72 0.6719 0.7268 0.0549 0.38 1.00 100
2.00 22.00 6.70 0.6832 0.6773 0.0251 0.17 0.62 61.7
3.00 22.00 4.22 0.6844 0.6670 0.0378 0.26 0.44 44.3
4.00 22.00 2.62 0.6660 0.6744 0.0084 0.06 0.18 17.9
5.00 22.00 1.65 0.6554 0.6442 0.0026 0.02 0.12 12.1
6.00 22.00 1.06 0.6700 0.6763 0.0063 0.04 0.10 10.2
7.00 22.00 0.67 0.6652 0.6727 0.0075 0.05 0.06 5.9

Final Filter 22.00 0.33 0.0154 0.0163 0.0009 0.01 0.01 0.63
Total 0.1435

* ECD - Estimated Cut Diameter (Dependent upon flowrate maintained through impactor).
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5.5 Spherical Particle Size Distribution Analysis Results

Image and SEM analysis of the particles found in DIII-D clearly indicates
numerous spherical particles formed from either melt atomization or vapor transport
processes during operation of the DIII-D experiment.  The SEM/EDS analysis discussed
in Section 4.2 shows that the spherical particles are composed of either carbon, steel, or
aluminum and oxygen.  Analysis of the spherical particles was completed to determine
the particle size of the spheres found in the samples.  Figure 5.32 shows the cumulative
size distribution of spherical.  Overall, the distribution shown in Figure 5.32 is
represented by 48 spherical particles having a CMD of 1.15 µm and a GSD of 1.94.  The
smallest spherical particle observed had a diameter of 0.48 µm and the largest spherical
particle observed had a diameter of 10.9 µm.  Spherical particles having compositions of
iron alloys, carbon, and aluminum oxide were observed.

Due to the relatively small number of total particles used in this analysis and the
difficulty of relating locational dependencies in the samples, no statistical tests have been
performed for this analysis.  Therefore, these data should only be used for informational
purposes.  The purpose of this data analysis is to provide preliminary information into
possible formation mechanisms related to spherical particulate in carbon first wall fusion
machines.  We believe that the spherical particulate is generally formed during plasma-
wall interactions yielding either melt atomization of material into droplets or by vapor to
particle conversion of material following a plasma-wall interaction.
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Figure 5.32. Cumulative percent size distribution for spherical particles.
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6.0 Discussion

6.1 Comparison with Previous DIII-D Collection (1996 Vent)

The samples analyzed for this report represent a detailed sampling of the DIII-D
vessel.  The sample that we collected in 1996 represented a selective sampling of
surfaces.  At the time we did not know that the bulk of the particulate resided in lower
horizontal locations protected from direct plasma exposure.  We did not keep good track
of the sampled locations nor the sampled surface area.  The samples collected in 1998
were collected in multiple areas of the machine on separate substrates keeping detailed
track of both the sample location and the sampled surface area.  Additional analysis for
the 1998 vent included specific surface area and detailed ICP-MS chemical analysis.
These analyses were not completed during 1996 because we did not plan the sampling to
facilitate the preparation of samples for elemental and surface area analysis.  The only
quantitative analysis for composition was completed using the EDS detector on the SEM.
The EDS indicated carbon, silicon dioxide, aluminum dioxide, and Inconel were present
in the samples.

The samples presented in this report contained an average of 45 wt% total metal
and an average of 30 wt% carbon.  We also observed significant higher quantities of
spherical particles as opposed to the predominately flake material found in 1996.  This is
probably due to the large quantity of metal dust found on the cold wall surfaces of DIII-D
during this vent.  The particle size distributions measured during the 1996 vent of DIII-D
compare well with the analysis completed for this effort.  Count median diameters from
the 1996 vent ranged from 0.5 µm to 0.86 µm with geometric standard deviations ranging
from 2.03 to 3.05.  Count median diameters determined during this analysis ranged from
0.46 µm to 1.0 µm with geometric standard deviations ranging from 1.42 to 4.39.  Mean
surface-volume diameters ranged from 7.20 to 33.3 µm.  A variety of particle shapes
were observed including flakes and spheres of carbon, iron alloys, and other exotic
material.  More spherical particles were observed during this analysis than were observed
in the 1996 vent.  This is most likely due to the careful sampling used during the 1998
vent.

6.2 Comparison with other Tokamak Dusts

The size distribution and specific surface area of the particulate found in the 1998
DIII-D samples compare well with other those of dust found in DIII-D and TFTR.  Figure
6.1 shows a plot of the specific surface area verses the particle mean surface-volume
diameter for a variety of materials, previous tokamak dust measurements, and the current
DIII-D measurement.  The specific surface area of dust obtained in the 1998 DIII-D vent
is higher than theoretical carbon spheres but compares extremely well with the previous
DIII-D measurement completed in 1996.  This is expected since the bulk of the sample is
flake material sometimes composed of agglomerates of smaller particles and not
spherical.  The bulk of the dust collected from both DIII-D and TFTR has had flake
structures.
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Figure 6.1. Graph of the BET Specific Surface area plotted verses the mean surface-
volume diameter for a variety of materials, previous measurements, and
the current C-MOD measurement.

6.3 Comparison with Simulated Disruption Dust (SIRENS)

The SIRENS disruption simulation facility has completed testing the interaction
of plasma disruptions with carbon materials8.  Three pure carbon interaction tests were
completed using UTR-22 graphite, ATJ graphite and lexan.  Additional tests conducted
by the SIRENS facility included testing mixed material interactions such as
carbon/aluminum, carbon/stainless steel, carbon/copper, and carbon/tungsten.  CMD
values from the pure carbon tests ranged from 0.07 to 0.54 µm with GSDs ranging from
1.96 to 3.57.  Figure 6.2 shows a 5000 X magnification photomicrograph of dust
collected on Button 3 of the ATJ graphite test.  The photomicrograph shows both flake
material as well as small spherical particles of graphite.

Similar to the SIRENS tests, spherical particles having compositions of carbon,
iron alloys, and other materials have been found during analysis of the DIII-D dust.
Figure 6.3 shows a graph of CMD and GSD results from various dust collection analyses
and tests in the SIRENS facility.  Also shown is the NSSR-2 dust specification9.  The
analysis results of DIII-D dust collected in 1996 is labeled “DIII-D 96” and is shown on
the left side of the graph.  The current, 1998, collection analysis is labeled “DIII-D 98”
and is shown on the right side of the graph.
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Figure 6.2. Photomicrograph of SIRENS ATJ graphite test (S764, button 3) (5000 X
magnification).
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Figure 6.3. Plot of various dust characterization analyses and SIRENS tests results.
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6.4 Estimate of Total Dust Content of the DIII-D Vacuum Vessel

A primary objective of the dust collection activity during the 1998 vent period
was to sample a significant portion of the available surface area within the vacuum
vessel.  Protection tiles were removed from the floor, ceiling, and outer divertor with the
specific purpose of sampling for dust underneath plasma facing components.  An attempt
was made to sample for dust on top of and underneath the 337 to 345° tiles on the floor,
on the outer divertor, and on the ceiling.  Sampling in this radial location at different
poloidal locations gave an estimate of the relative distribution of dust in the poloidal
direction both on the surface of tiles and also underneath the same tiles.  We also sampled
from the surface and from underneath three additional sets of floor tiles with all of this
data we were able to determine the distribution of dust in and around the DIII-D vacuum
vessel (see Figure 2.19).  We then took average values of dust concentrations on and
underneath the baffle surfaces, the upper vertical surfaces, and the floor surfaces and
multiplied by the appropriate surface area to obtain an estimate of the total mass of dust
in DIII-D.  The results are shown in Table 6.1.  There is uncertainty in this estimate
associated with the following:

a) surface area of components.  Values are approximate due to variations of tile size
in the machine.  (Estimated error:  ±10%)

b) Penetrations.  Penetrations are assumed to represent a small portion of the surface
area of the DIII-D vacuum vessel and thus are not accounted for.  (Estimated
error:  +5%).

c) Particulate collection efficiency.  The collection efficiency is assumed to be 100%
in the analysis.  Limited controlled lab tests indicate sampling efficiencies for
total mass filter housings are on the order of 80 – 90%.  For cascade impactor
measurements, efficiencies may be as low as 30 – 40%.  (Estimated error:  300 -
400%)

d) Ex-vessel dust locations.  Dust located in penetrations and locations removed
from the first wall and immediately behind the first wall are not considered.  Dust
in these locations generally are not applicable to accident source terms because it
is not readily mobilized nor is it subjected to high heat fluxes during accidents.
(Estimated error:  0%).

Based upon these errors we feel that the estimate of 33 grams could be a
significant underestimate because of the low sampling efficiency of the cascade impactor
and the large amount of mass collected by the impactor underneath the floor tiles.  The
total dust could actually be as high as 90 to 120 grams.

Table 6.1.  Summary of total dust estimate.
µg/cm2 cm2 mg µg/cm2 cm2 mg

Baffle Surfaces
0.15 252696 38

Underneath
Baffle Surfaces

19.6 252696 4952

Upper/Vertical
Surfaces 0.10 254657 25.5

Underneath
Upper/Vertical
Surfaces

0.81 254657 56.4

Floor Surfaces
0.132 290322 100

Underneath
Floor Surfaces 82 290322 28000

Total Surfaces 163.5 mg Total Underneath Surfaces 33000 mg
Total 33 grams
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7.0 Conclusion

General Atomics and INEEL scientists collected dust samples from the DIII-D
vacuum during the first days of a vent.  Seventeen samples vacuumed onto filters, four
samples vacuumed through cascade impactors, and three replicating tape samples were
collected from the vacuum vessel.  The samples were collected using the same
procedures used in the previous sampling of DIII-D, Alcator C-MOD, and TFTR.  All of
the samples collected at DIII-D were sealed and returned to the INEEL for analysis.
Three types of analyses were performed on the samples at the INEEL:  BET specific
surface area,  ICP-MS and SEM/EDS composition, and particle size distribution analysis.
Surface area measurements give information important to predicting the chemical
reactivity of tokamak dust.  Particle size measurements are needed to provide information
on the transportation of particulate.  We report particle size data as the CMD and GSD
when presenting general particle size distribution information and as the DMVS when
relating a distribution’s specific surface area and particle size.  Our compositional
analysis helps identify the source of dust and the particle formation mechanisms.  Based
on our analysis, the following conclusions can be drawn:

• Our BET analysis reported results are based upon three measurements of a sample
combined from approximately 75% of the filter housing samples.  The samples were
combined to yield a detectable surface area of dust.  The combined sample had an
average specific surface area of 3.18 m2/gram from a total sample weight of 0.11
grams.  This value is very similar to the value obtained in the 1996 DIII-D dust
campaign and is a factor of 2 greater than that for theoretically dense graphite
spheres.  This indicates that as previously observed, the particulate is not spherical
and is composed of agglomerates of smaller particles.

• The particle size distribution analysis results of dust taken from inside the vacuum
vessel show a range of CMD values ranging between 0.81 µm and 2.89 µm with a
range of GSD values between 1.33 and 3.43. DMVS values ranged between 1.1 and
13.3 µm.  The MMD of the particulate was determined from the cascade impactor
data.  The MMD’s were 7.25 µm with a GSD of 1.4 and 5.44 µm with a GSD of 2.2.
The observed particles appeared in the form of both flakes and spheres.
Compositional analysis by SEM/EDS showed individual dust composed of
molybdenum, iron, boron, and aluminum.  Overall chemical analysis by ICP-MS of
the cascade impactor samples and the combined filter housing sample used for BET
analysis resulted in a wide variety of material.

• Elemental analysis of the dust indicates that the dust is primarily carbon (30 wt%)
with significant quantities of metal (45 wt%, primarily iron/nickel based alloys).
Insulator materials were found in the dust throughout the machine as well as smaller
quantities of various elements that are contained in instrumentation and diagnostic
components.

• The bulk of the material analyzed was found in lower protected regions of the
vacuum vessel.  Most of the dust was found under the floor tiles and inside the access
ports.  Dust concentrations in these locations were between 10 and 100 µg/cm2.  The
smallest quantities of dust were found in the upper vertical locations of the vacuum
vessel and on plasma facing surfaces.  Dust concentrations in these locations were
between 0.01 to 1 µg/cm2.  Using these dust concentrations and integrating around the
vacuum vessel in the general areas sampled, the total quantity of dust that may be
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present in the vacuum vessel could be as low as 30 grams and as high as 90 to 120
grams.
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